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1. Introduction

In this report we analyze the probability distribution of the length of

a failure-free reliability test and the conditional reliability r(t, At) of

components undergoing the reliability test. The conditional reliability of

a component we define as the probability of a component not failing for At

time units in the future, given that the component is operating at time t,

r(t, At) - P [ T > t + At IT > t J1

We assume a two-parameter Weibull life-length distribution with scale para-

meter 6 and shape parameter p. When 8 - 1, the Weibull coincides with the

exponential distribution, so that (1) reduces to the reliability at time At,

r (t, A t) = R Q t) -P [ T > 6tt3 (2)

Although the results contained herein are valid for any values of 8 > 0, we

restrict ourselves to a reliability growth situation in which B < 1.

We use these ideas to compute the expected length of a failure-free

test and contrast it with a fixed-length test whose length is equal to the

expected length of the failure-free test. We can then examine the condi-

tional reliability of a component at the end of the original burn-in time.

The results of this report can be used by the test engineer to answer the

following questions:

(a) How much longer than the original burn-in time can a failure-free

test be expected to run?

(b) How many more failures can be expected in a fixed-time test with

the same length as the failure-free test?

Based on the answers to these questions, the test engineer can decide which

reliability test, fixed-length or failure-free, would be more useful. For

ease of application, we provide some charts which can be easily used to de-

termine the length and conditional reliability of a failure-free test.



In section 2 of this report we describe in detail a failure-free relia-

bility test. In order to perform the analysis, we must make a number of

assumptions which we explicitly state in section 3. In section 4 we derive

the equation of the probability distribution of the test length, and in

section 5 we derive the conditional reliability equation. In section 6

we discuss briefly the numerical solutions of these equations and the es-

timation of parameters. In section 7 we describe the testing procedure and

provide some numerical examples. Appendix A contains charts for the test

length, and Appendix B contains charts for the conditional reliability.
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2. Failure-Free Reliability Tests

A failure-free reliability test is one in which a system must pass a

fixed time, to, free of failure before being accepted. If a failure is en-

countered before time to, the system is repaired and a new burn-in period of

length t0 is re-established. This reliability testing philosophy has merit

in those situations in which there is suspected non-homogeneity of quality

among various systems. In those situations, those systems that are 'likely to

fail' will receive a great deal of testing before being accepted. On the other

hand, other systems will be accepted with the original burn-in time tO.

This type of reliability testing procedure may not be optimal in cer-

tain other situations. For instance, it may be difficult to justify an

a priori assumption of non-homogeneity of quality among systems. In fact,

the systems may all have identical time-to-failure probability distributions

which are unchanged following repair. However, due to strictly random failure

times, some components may appear to be 'likely to fail' and thus receive an

inordinate amount of burn-in. Other components, on the other hand, may be

accepted after time t0 although they would have failed shortly after.

A simple example of the above is a series system made up of n devices.

Suppose that the times to failure of all of the devices are independent iden-

tically distributed (iid), with an exponential life-length distribution

f i Mt - Xe"xt , i - 1, 2, ..., n (3)

Since this series system will fail when the first device fails, it follows

that the system's life-length distribution is that of the smallest order

statistic, which is

f(t) w n x e'~t  (4)

again exponential. Now, if the system fails and the inoperative device is

3
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replaced by one with an identical life-length distribution, then the memory-

loe property of the exponential guarantees that the system will have the

eamo life-length distribution (1). It is erroneous, then to conclude that

this system requires a longer burn-in period than the others, since in fact

they all have identical life-length distributions. If the device life-length

distribution is Weibull, then the smallest order statistic still has a Weibull

distribution. In this case, however, the reasoning is not as direct, since

the other components have 'aged' and therefore have a different life-length

distribution from that of the repaired system. Iu this report we examine

this situation, subject to certain background assumptions.



3. Problem Formulation

The model which we consider is based on the following assumptions:

(i) The life-lengths of the system are ild following a two-parameter

Weibull distribution:

f (t) - /8 (t/)B-/ exp -(t/&f t > 0, 6 > 0, 0 < 1 (5)

The restriction that 0 A 1 is not strictly necessary. For the

purpose of this report, however, we restrict ourselves to this

case, which represents a reliability growth situation (or: de-

creasing hazard rate). The parameter 8 is referred to as the

characteristic life, in that 63.2% of the components on the

average will fail before 8, independent of the value of p. In

later sections, we will re-parametrize the terms of

Y t/6 (6)

and thus interpret y as a fraction of the characteristic life.

The Mean Time Between Failure (MTBF) for such a system is given by

MTBF - 6 r (1 + l/S) (7)

The reliability function, R(t), is given by

R(t) - exp [-(t/6)]O (8)

If = ., this distribution reduces to an exponential with

MTBF = 6.

(ii) All of the systems are simultaneously burned in for t time units.

If a system fails before time to, it is removed from test, re-

paired, and its post-repair condition is the same as a new sys-

tem. That is, its life-length distribution is as given in (5).

We further assume that there is independence between the life-

lengths before and after repair. This would not be the case,

for example, if there were a cowmon source of failure which went

5



undiagnosed, Assuming that the true cause of failure were diagnosed and

corrected each time, however, independence of life lengths is not an un-

reasonable assumption. Since it takes some time to effect the repair, a

new burn-in cycle for the repaired system is begun at the end of the ori-

ginal cycle; that is at time to.' All. repaired systems are then burned in

from time t 0 until time 2t0, with the process being repeated for those sys-

tems which fail once again. A system is not accepted until it passes a

time period of length t 0 which is failure-free.



4. Length of a Failure-Free Test (one system)

The length, L of a failure-free test is a random variable, and under

the assumptions above,

P [L = kt& - P [Failure during first k-i cycles and success during

the kth cycle]

By independence it follows that

P [L = kt& = [1 - R(t)]k-I R(t), k - 1, 2, 3, (9)

which, using (8) becomes

P [L = kt& = [I - exp [-(to/ 6)B]}k'l exp [-(t 0 /8)"] (10)

If we define the random variable

W = L/t0  (11)

(where W = number of burn-in periods required to 'failure free')

then W follows a geometric distribution.

From this observation it follows that

E(W) = exp (t0 /B), (12)

and

Var (w) - exp [2(t0 /6)0] - exp (to/6 )0 (13)

Using (11), therefore, we obtain

E(L) = t 0 exp (to /6) (14)

and
2 

p
Var (L) t exp [2(t0/) 8] exp (tO0

Of more usefulneas than expected value of test length, E(L), is the

expected proportional excess test time over to, which we define as

L - (E(L) - to)/t 0  (15)

Using (11), we obtain

L X exp (t0/8) - 1 (16)

7



5. Probability of Failur-p

The time inter-al

I - (to, E(L)) (17)

represents the expected additional time that a failure-free test extends over

a fixed-time test of length t We now consider the system reliability over

the time interval I. Specifically, we derive the probability of system fsil-

ure over I. If this probability is sufficiently high, then rather than use

a failure-free procedure, the test engineer would want to extend the test to

time E(L) equally for all systems. In either case, the expected total test

time devoted to all systems is the same, namely

Total Test Time -n E (L) (18)

Therefore, the test engineer can make a decision at time t0 between two

approaches which have approximately the same cost (since the total test times

are equal, and assuming the test cost is proportional to its length), buc one

of which will have a higher pay-off in terms of defects found.

We are interested in

h(t0 ; 6, e) - P [Failure in I I T > t01 (19)

Such a conditional probability can be interpreted as the fraction of

those systems still operating at time t0 which will fail during time inter-

val I. The conditional reliability will then be given by

r(t0, E(L) - t0 ) = 1 - h (t0 ; 6, 0). (20)

Since h(to; 5, B) B P [Failure in 1'/P [T > to] (21)

F fR(to) - R[E(L)] /R(t0 ) (22)

1 - R [E(L)]/R(t0 ) (23)

we have

h( , B) 1 - exp ((t 0 /8)0 [1-exp ($(t 0 /8) 8 ) ] ) (24)

and

8



r(to, E(L) - t) exp [(t 0 /8)8 [1- exp (0 y P)]3  (25)

6. Expected Repeat Failures

The expected additional number of repeat failures for a failure-free test,

RFF, may be computed using the developed distributions as

RFF = n [ exp (t 0 /6)-1]- n[I - exp - (t 0 /A)0]. (26)

These two terms may be interpreted as the total expected number of failures

and the expected number of failures in the first burn-in period, respectively.

If a fixed-time test is used, and failed items are replaced, then the expected

additional number of repeat failures, RFT, may be computed by

RFT - r El - exp f - (Lxt 0 /)e3] (27)

where r number of failures in time to.

9



6. Numerical Methods

Included with this report is a set of charts (Appendices A, B) which con-

tain solutions of equations 16 and 24 for Lx and h as a function of the para-

meters 0 and N = t/6. These charts were produced using a Newton-Raphson al-

gorithm, solving iteratively for Y in the equations

n n- -h* (28)

yaw -LO(, ) - L* (29)
ACL ([ , )

where h* and L * are constants. Figures 1 through 5 are solutions of h andx

Figures 6 through 9 are solutions of L . The figures differ in their rangex

of values, as listed in Tables I and II. The computations were performed on

the Air Force Academy's Burroughs B6700 computer.

Table I. Ranges for h(y, 0) graphs

Figure & X h

1 0.0 - 1.0 0.00 - 0.01 0.01 - 0.10

2 0.0 - 1.0 0.00 - 0.01 0.10 - 1.00

3 0.0 - 1.0 0.01 - 0.10 0.02 - 0.10

4 0.0 - 1.0 0.01 - 0.10 0.10 - 1.00

5 0.0 - 1.0 0.10 - 1.00 0.20 - 1.00

10
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Table II. Ranges for L (y, ~)gzaphs

Figure Ry L
_K

6 0.0 - 1.0 0.00 - 0.01 .001 - .007

7 0.0 - 1.0 0.01 - 0.10 .01 - .08

8 0.0 - 1.0 0.00 - 1.00 .01 - .10

9 0.0 - 1.0 0.20 - 1.00 .10 - .80

In order to use these charts, the parameters 6 and 0 must be known. Since

there is vast literature concerning this problem, we only make a few brief

commients. There are at least three well-known methods to estimate para-

meters: maximum likelihood, graphical and linear. Maximum likelihood me-

thods contain some computational and theoretical difficulties. The likeli-

hood equations cannot be solved explicitly, and hence numerical algorithms

must be used. For the two-parameter Weibull distribution, the order sta-

tistics are sufficient but not complete. Hence, small-sample optimality

properties of the maximum-likelihood estimators can not be directly appealed

to. Instead, asymptotic results must be used.

Graphical techniques are based on a graphical estimation of the cumula-

tive distribution function based on the order statistics. The procedure

consists of plotting failure times versus percent of sample that has failed

on Weibull probability-paper. Theoretically this data should lie on a

straight line. Due to sampling errors, there will be some deviations from

the theoretical straight line, and so a least square line is visually fit to

the data points. The slope of this line provides an estimate of ~,and the

time point corresponding to 63% failures provides an estimate of 6.This

graphical technique has& been programmned on an APPLE computer graphics system

by the authors. This provides one the advantage of being able to visually

notice the degree of fit of the data to the model. In addition, an exact



least squares line can be easily fit to the data. In order to use this pro-

gram, the test engineer only needs to input the times to failure. The rest

is done by the computer, including the estimates of the parameter. An exam-

ple of this graphical technique on the APPLE computer system is provided in

Figure 1 . The drawback of this method is that it assumes testing until all

items fail, or at least a large p,_z-entage. Under Type I or II censoring,

this procedure has to be modified.

Linear techniques are based on a few ordered statistics and are designed

to provide best linear estimates under certain assumptions. They are easy to

use and are adaptable to computer use by the maintaining of weights for the

order statistics in a computer data base.

Full descriptions of these and other parameter estimation techniques

are contained in [3 ~

12



7. Testing Procedure

The testing procedure suggested by the foregoing analysis is as follows:

(a) Determine the initial burn-in time, to.1

(b) Based on the number of failures observed to time top estimate 6

and . Calculate y - t06

(c) Locate the values of Y and 0 on a chart and determine L and h.

L Xis the expected proportional extra time that a failure-free

test would run and h is the proportion of those systems still

operating which will be expected to fail during that time.

(d) On the basis of L and h, make a decision to either
x

Mi Accept those components that are still operating, and ze-

test the failed components in a failure-free mode. This

decision might be taken if h were very lo0w.

(ii) Extend the test time on all systems to the new fixed time,

t 1+ L x). At that time, accept those components still

operating. This decision may be taken if the value of h

is high, since by extending the test time there would be

a high probability of finding more defectives.

Numerical Examples

(a) A set of n -.100 avionic systems is burned-in for an initial period

of t a 10 hours. At the end of this time period, 15 systems have0

failed and 85 are still operating. Based on the failure times of

these components, estimates of and 6 are obtained as

P-0.56

6-320I An estimate of y is then

- t 0 /8-.031

13



From Figure A-3, L m .15 while from Figure P -2, h .85. Hence,

(i) The expected length of a failure-free test is an additional

1.5 hours (10 x .15) per component.

(ii) If 1.5 hours of extra burn-in time are given equally to each

of the systems still working, we would expect one additional

new failure (85 x .01 a .85, rounded off to one). If this

fixed-time procedure were done with replacement, then (using

Equation 27), we would expect one repeat failure (.73, rounded

off to cne).

(iii) If the failure-free method were followed, we would expect

(using Equation 26) an additional two repeat failures (2.05,

rounded off to two).

(b Under the same situation as above, the estimnates of S and 8 are:

8-.32

6-66.7

An estimate of y in this case is

-Y M t 0/6 - .15

From Figure A-4, the value of L xis given as .7, while from Figure B-3,

the value of h is given as ..09. In this case,

WI The expected length of a failure-free test is an additional

7 hours (10 x .7) per component.

(ii) If 7 hours of extra burn-in time are given equally to each of

the systcms still working, we would expect eight additional

new failures (85 x .09, rounded off to eight). If this fixed-

time procedure were done with replacement, then (using Equation

27) we would expect 6 repeat failures (5.8, rounded of f to six).

(iii) If the failure-free method were followed, we would expect (using

14



Equation 26) an additional 30 repeat failures (30.44, rounded

Since 9  fthe wrking systems would thus fail in the next 7 hours,

thedecsio ma bemad toextend the test an additional 7 hours and

accpt hos sytem stlloperating at the end of that time.

15



9. Conclusion and Recommendations

Based on these results, a decision on the use of a failure-free test

should depend on the values of the parameters of the life-length distribu-

tion. Under certain conditions a failure-free test is desirable, while under

other conditions it makes more sense to extend the test length evenly among

all components. This report contains charts which provide the test engineer

with the information necessary to make this decision.

An assumption underlying this report involves independence and identical

distribution (iid) of the pre and post-repair lifetimes. On the other hand,

this model allows for aging of components through the Weibull failure dis-

tribution. Models which assume an exponential failure distribution automa-

tically imply iid pre and post-repair lifetimes due to the memoryless property

of the exponential. Therefore, the Weibull assumption is a closer approxima-

tion than the exponential assumption. A possibie extension of this research

would be a relaxation of the iid assumption resulting in a better approxima-

tion to an actual reliability test.
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APPENDIX A

Expected Test Length Charts
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APPENDIX B

Conditional Failure Probability Charts
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E

FAILURE TIMES

tI ----------- 48 hours

t 2 - - - - - - - - - - - 132 hours

t3 ----------- 156 hours

t 4 - - - - - - - - - - - 175 hours

t5 ----------- 240 hours

t6 ----------- 360 hours

Figure 1. Estimation of parameters unine c-nnhical

technique on the APPLE comjuter.
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